The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
现有的数据集用于训练窄带射频(RF)信号分类的深度学习模型缺乏信号类型和渠道障碍的多样性,无法充分评估现实世界中的模型性能。我们介绍了SIG53数据集,该数据集由500万个合成生成的样品组成,来自53个不同的信号类别和专业选择的损害。我们还介绍了Torchsig,这是一种信号处理机学习工具包,可用于生成此数据集。 Torchsig结合了视觉域共有的数据处理原理,它旨在作为未来信号机器学习研究的开源基础。使用SIG53数据集的初始实验是使用最新技术(SOTA)卷积神经网络(Convnets)和变压器进行的。这些实验揭示了变形金刚在不需要额外正规化或转向师教师的情况下优于转向器,这与视觉领域的结果相反。其他实验表明,火炬的特定于域的数据增强功能有助于模型培训,最终使模型性能受益。最后,Torchsig在训练时支持即时的合成数据创建,从而可以通过几乎无限的数据集实现大规模训练会话。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
虽然我们注意临床自然语言处理(NLP)的最新进展,但我们可以注意到临床和翻译研究界的一些抵抗,因为透明度,可解释性和可用性有限,采用NLP模型。在这项研究中,我们提出了一种开放的自然语言处理开发框架。我们通过实施NLP算法为国家Covid队列协作(N3C)进行了评估。基于Covid-19相关临床笔记的信息提取的利益,我们的工作包括1)使用Covid-19标志和症状作为用例的开放数据注释过程,2)一个社区驱动的规则集合平台,3)合成文本数据生成工作流程,用于生成信息提取任务的文本而不涉及人为受试者。 Corpora来自来自三个不同机构的文本(Mayo Clinic,肯塔基州大学,明尼苏达大学)。用单个机构(Mayo)规则集进行了金标准注释。这导致了0.876,0.706和0.694的F-Scors分别用于Mayo,Minnesota和肯塔基测试数据集。作为N3C NLP子群体的联盟努力的研究表明,创建联邦NLP算法开发和基准测试平台的可行性,以增强多机构临床NLP研究和采用。虽然我们在这项工作中使用Covid-19作为用例,但我们的框架足以适用于临床NLP的其他兴趣领域。
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.
translated by 谷歌翻译
Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics are disregarded and the person is treated as a body or a collection of body parts. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that, commensurate with prior research in psychology, human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >.8) and sadness (d >.5). A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP (age 17), and up to 40% of the time for Stable Diffusion (ages 14 and 18); the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on automatically collected web scrapes learn biases of sexual objectification, which propagate to downstream applications.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译